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A B S T R A C T   

Coronavirus disease 2019, known as COVID-19, is caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). The early, sensitive and specific detection of SARS-CoV-2 virus is widely recognized as the critical 
point in responding to the ongoing outbreak. Currently, the diagnosis is based on molecular real time RT-PCR 
techniques, although their implementation is being threatened due to the extraordinary demand for supplies 
worldwide. That is why the development of alternative and / or complementary tests becomes so relevant. Here, 
we exploit the potential of mass spectrometry technology combined with machine learning algorithms, for the 
detection of COVID-19 positive and negative protein profiles directly from nasopharyngeal swabs samples. Ac-
cording to the preliminary results obtained, accuracy = 67.66 %, sensitivity = 61.76 %, specificity = 71.72 %, 
and although these parameters still need to be improved to be used as a screening technique, mass spectrometry- 
based methods coupled with multivariate analysis showed that it is an interesting tool that deserves to be 
explored as a complementary diagnostic approach due to the low cost and fast performance. However, further 
steps, such as the analysis of a large number of samples, should be taken in consideration to determine the 
applicability of the method developed.   

1. Introduction 

The novel coronavirus disease 2019, known as COVID-19, is caused 
by the SARS-CoV-2 virus and has been declared a pandemic by the 
World Health Organization on March 12th following its emergence in 

Wuhan, China (Yang et al., 2020). As of April 4th 2020, there were more 
than 1.2 million confirmed cases of COVID-19 in 175 countries, with 
more than 65,000 deaths (COVID-19 Map-Johns Hopkins Coronavirus 
Resource Center, 2020). SARS-CoV-2 is one of four new pathogenic vi-
ruses which have jumped from animal hosts to humans in the past 20 
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years, and the current pandemic alerts the entire scientific community 
about the need for research in different fields to help control it in a short 
time. 

Clinical presentation of COVID-19 ranges from mild to severe illness 
with a high proportion of the population showing no symptoms but 
being equally infectious (Zhou et al., 2020). Together, these features 
have led to intensive lockdown measures in most countries with the aim 
to restrict the spread of the virus, limit the burden on healthcare systems 
and reduce mortality rate. In parallel, there has been an extraordinary 
response from the scientific community. These collective efforts aim to 
understand the pathogenesis of the disease, to evaluate treatment stra-
tegies and to develop a vaccine at unprecedented speeds in order to 
minimize its impact on individuals and on the global economy (Li, 2016; 
Wenzhong and Hualan, 2020). 

The early, sensitive and specific detection of SARS-CoV-2 virus is 
currently widely recognized as the critical point in responding to the 
ongoing outbreak. Since the testing capacity of real time RT-PCR 
methodology is being challenged due to the extraordinary global de-
mand of supplies such as RNA extraction kits and PCR reagents, alter-
native and/or complementary testing assays need to be deployed now in 
an effort to accelerate our understanding of COVID-19 disease (Chin 
et al., 2020; Antezack et al., 2020). 

Recently, matrix-assisted laser desorption ionization time-of-flight 
mass spectrometry (MALDI-TOF MS) has been used in many clinical 
laboratories with different applications. The peptide or protein MS 
fingerprint of a sample can be generated and stored in a library for 
further identification. In addition, MALDI-TOF MS also provides an 
alternative solution for molecular typing methods, thus enabling to 
detect an outbreak or a transmission route in time. 

The aim of this work was to assess the potential of MALDI-TOF MS 
technology to create mass spectra directly from nasopharyngeal swabs 
in order to find specific discriminatory peaks by using machine learning 
algorithms, and whether those peaks were able to differentiate COVID- 
19 positive samples from COVID-19 negative samples, with the appli-
cation of different approaches for the analysis. 

2. Materials and methods 

2.1. Sample preparation and MALDI-TOF data acquisition 

2.1.1. Samples 
All samples of nasopharyngeal swab (synthetic fiber swabs with 

plastic or wire shafts) in 2 ml of saline solution were submitted to the 
Reference Respiratory Virus Laboratory at INEI-ANLIS Dr Carlos G. 
Malbrán. The gold standard methodology consists in the detection of the 
specific genes (RdRp, E and N) of the virus by real-time RT-PCR (Corman 
et al., 2020). Then the samples are stored at − 20 ◦C until their use in 
MALDI-TOF MS. 

For the assay, samples of 311 patients were analyzed. At the moment 
of generating the spectra, the samples were thawed at room temperature 
and gently shaken. Without another prior enrichment, 1ul of the sample 
was spotted on each well of the steel plate (MSP 96 target ground steel; 
Bruker Daltonics), by triplicate, then allowed to dry for a few minutes at 
room temperature and covered with 1ul of commercial HCCA matrix (a 
solution containing α-cyano-4-hydroxycinnamic acid diluted into 500 μL 
of acetonitrile, 250 μL of 10 % trifluoroacetic acid and 250 μL of HPLC 
grade water). After the wells dried, the MALDI plate was introduced into 
the MicroFlex LT instrument version 3.4 (Bruker Daltonics, Bremen, 
Germany). 

All manipulations were performed under certified class II biological 
safety cabinet TELSTARTM BIO IIA (Thermo Fischer Scientific, Villebon 
sur Yvette, France) and wearing all the appropriate personal protective 
equipment (PPE) required to comply with biosafety standards (World 
Health Organization, 2020). 

2.1.2. Spectra acquisition 
The mass spectra were acquired manually using FlexControl software 

v3.4 (Bruker Daltonics, Bremen, Germany) in the OFF mode by triplicate 
for each sample. Data were collected between 2000− 20000 Da in linear 
positive-ionization mode. Each spectrum was a sum of 240 laser shots 
collected in increments of 40. Data acquisition was carried out at 40 % of 
the maximum laser energy. The platform was previously calibrated ac-
cording to the manufacturer’s instructions using the Bruker Daltonics 
Bacterial Test Standard (Bruker Daltonics, Bremen, Germany). 

All spectra collected were post processed using the Flex Analysis v3.4 
software (Bruker Daltonics, Bremen, Germany), by the multiple 

Fig. 1. Main spectra profiles (MSPs) based dendrogram of the 20 samples supplemented in the new in-house database. The horizontal axis of the dendrogram 
represents the calculated distance in the clustering analysis, displayed in relative units, corresponding to the similarity of MS spectra. The dendrogram was created 
using Biotyper v3.0 software. 
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spectrum display for spectra comparison and analysis (Flex Analysis 3.4 
User Manual®). 

2.2. MALDI-TOF MS spectra analysis 

2.2.1. Database development. MSP library construction 
Those spectra with high intensity and low noise peaks were selected 

to build an “in-house” database with Maldi Biotyper OC V3.1 software 
(Bruker Daltonics, Bremen, Germany): 20 Main Spectrum Profiles 
(MSPs), including 9 COVID-19 positive samples, 8 COVID-19 negative 
samples and 3 positive samples for other respiratory virus, were created 
from the proteomic data generated and according to manufacturer’s 
instructions. In order to incorporate the MSPs into the additional data-
base, they had to meet the following criteria: to have at least 40 peaks 
conserved with a frequency of 100 % for each mass. This new database 
generated from local samples was named BE COVID-19. 

Once the 20 MSPs were generated, an MSP dendrogram was con-
structed to assess the relatedness of these MSPs using default settings 
(Cipolla et al., 2018). See Fig. 1. 

2.3. Potential biomarkers detection 

Mass spectrometry-based search for biomarker patterns is widely 
recognized (Pusch et al., 2003). Here, we use two different software to 
detect characteristic peaks of COVID-19 positive samples versus 
COVID-19 negativesamples. These potential biomarkers were searched 
based on the MSPs created. 

2.3.1. Flex analysis v3.4 software analysis 
Flex Analysis is the post processing software for spectra acquired 

with the Bruker time-of-flight mass spectrometers of the flex series, and 
proteomic data can be delivered in form of spectra and peak lists to 
further interactive data processing. In brief, spectra files from MSPs 
were exported as mzXML files using CompassXport CXP3.0.5. (Bruker 
Daltonics, Bremen, Germany). The flex programs support three different 
detection algorithms: Centroid, SNAP, and Sum peak finder. Centroid is 
often used in case of protein spectra and benefits from defining mass 

accuracy, which uses the first and second derivative to detect a peak. For 
the peak position, a specific cut off level above the baseline, a value 
around 80 %, was used. The result is stored in the peak list and the mass 
spectrum is displayed with the detected mass peak labels. Flex Analysis 
offers different parameters that can be displayed in the Mass List (Area, 
Background Peak, Chi Square, FWHM, Intensity, Relative intensity, 
Resolution and Signal to Noise), this peak list was exported to Excel 
(Microsoft, Redmond, WA) to analyze potential biomarkers. Also, a vi-
sual analysis of the spectra was performed, searching for significant 
differences between the two study groups. 

2.3.2. ClinPro tools software 
Spectra files from MSPs were loaded into the ClinPro Tools software 

(version 3.0, Bruker Daltonik GmbH, Bremen, Germany). The data 
preprocessing steps, including baseline subtraction, smoothing, and 
recalibration, were set as default for all analyses (Bruker Daltonik 
GmbH, 2011; Camoez et al., 2016; Zhang et al., 2015). Characteristic 
peaks among different profiles (Class 1= COVID-19 Positive Samples; 
Class 2= COVID-19 Negative Samples) were selected and sorted through 
several statistical tests, including the t-test, analysis of variance 
(ANOVA), the Wilcoxon or Kruskal–Wallis (W/KW) test, and the 
Anderson–Darling (AD) test. A P-value of 0.05 was set as the cutoff 
(Wang et al., 2018): 

If P was <0.05 in the AD test, a characteristic peak was selected if the 
corresponding value of P in the W/KW test was also <0.05. When P was 
0.05 in the AD test, then a characteristic peak was selected if the cor-
responding value of P in ANOVA was also <0.05 (Stephens, 1974). 
(Supplementary Table S1). 

The two-dimensional distribution plot of characteristic peaks of each 
class can be seen in Fig. 2. 

Biomarker peaks were identified by pairwise comparison of classes 
using the “Peak Statistic Table” function in ClinPro Tools followed by 
manual confirmation that the same peaks were distinguishable using 
Flex Analysis (Khot and Fisher, 2013); the discriminatory power for each 
putative biomarker was further described via analysis of area under the 
receiver operating characteristic (ROC) curve (AUC). The ROC curve 
gives a graphical overview about the specificity and the sensitivity of a 

Fig. 2. 2D Peak Distribution Plot of 2-class model (MSP 
database). This plot displays the distribution of two selected 
peaks in the non-excluded spectra on the loaded model gen-
eration classes. The data is shown on a two-dimensional plane. 
By default, the first two (best separating) peaks of the current 
statistic sort order are displayed. The ellipses represent the 
standard deviation of the class average of the peak area/in-
tensities. The x-axis shows the peak area/intensity values with 
respect to the most important peak in accordance to the p- 
value, and the y-axis the peak area/intensity values for the 
second most important peak, respectively. The axis measures 
are given in arbitrary units which are chosen automatically to 
fit the plot optimal in the plane. Plot obtained by ClinPro Tools 
v3.0.   
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test, and in this case an evaluation of the discrimination quality of a 
peak. An AUC value of 0 indicates that the considered peak is not 
discriminating, while an AUC of 1 indicates that the considered peak is 
discriminating. 

2.4. Classifier models based on machine learning 

The aim of model generation is to determine a common signature 
among spectra of each of the model classes in such a way that spectra of 
test isolates can be classified. This approach was performed using 
ClinPro Tools functions: data preparation, model generation, and 
spectra classification. Data preparation involved baseline subtraction 
(top hat; 10 % minimal baseline width), normalization (total ion cur-
rent), recalibration (1,000 ppm maximal peak shift and 30 % match to 
calibrant peaks, with exclusion of spectra that could not be recali-
brated), average spectrum calculation (resolution 800), average peak 
list calculation (signal-to-noise threshold 5), peak calculation in the 
individual spectra, and normalization of peak lists. 

Classification models were generated using GA/ k-nearest neighbor 
algorithm. 

2.4.1. Establishment of the training set 
432 Spectra (corresponding to: 55 positive samples, 57 negative 

samples, 24 samples positive for influenza virus, named from now as 
FLU and 8 other respiratory virus samples) constituted the training 
group which was used to build several classification models. To deter-
mine the accuracy of the class prediction model, the software offers 
cross-validation and recognition capability. Cross-validation is a mea-
sure of the reliability of a calculated model and can be used to predict 
how a model will behave in the future. This method is used to evaluate 
the performance of a classifier for a given data set under a given 
parameterization. Recognition capability describes the performance of 
an algorithm, i.e., the proper classification of a given data set. 

In this study, multiclass models for classifying an isolate were 
designed: 

1- A two-class model named A (Class 1= COVID-19 positive samples; 
Class 2= COVID-19 Negative samples). 

2- A three-class model named B (Class 1 = COVID-19 positive sam-
ples; Class 2 = COVID-19 negative samples and Class 3 = positive 
samples for other respiratory virus). 

3- A two-class model named C (Class 1= COVID-19 positive samples; 
Class 2= Influenza positive samples). The design of this model was 
decided because many FLU samples were classified as COVID-19 posi-
tive when the 3 class model was used, so in order to optimize the results, 
a specific COVID-19 versus FLU model was created and applied only 
when a sample was positive either for COVID-19 or other respiratory 
virus in the 3 class model. 

Pretreatment, normalization, baseline subtraction, peak defining 
(range 1960− 20000 m/z), recalibration; and then, the automatic com-
parison of multiple spectra were performed. Values of m/z from the 
average spectra of each class and informative peaks were identified 
according to their statistical significance, as determined by the different 
statistical tests supported by ClinProTools: Anderson–Darling test, t-/ 
analysis of variance (ANOVA) test and Wilcoxon/Kruskal–Wallis tests. 
Informative peaks were those showing a significant difference between 
the classes as mentioned above. The best TOP TEN peaks are summa-
rized in Table 1 (Full table can be found in Supplementary material, 
Table S2). 

2.4.2. External validation test of the classification models 
To show the efficacy and accuracy of the algorithm developed, an 

external validation was performed with a classification set of 501 
spectra (n:167), different from the samples used to create the training 
set, using the “Classify” function in ClinPro Tools. 

For each sample from the validation groups, a corresponding spec-
trum was presented to the selected classification model. Then, the Ta
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software returned a result that was compared with the actual reference 
techniques. 

2.5. Statistical analysis 

For evaluating the performance, accuracy, sensitivity, specificity, 
positive prediction and negative prediction were calculated (ClinPro 
Tools 3.0: User Manual, 2011). 

Table 2 
Parameters of the “in-house” Database evaluated (n = 50).  

Parameters Evaluated (%) 95 % CI (%) 

Accuracy 38.0 (24.65–52.83) 
Specificity 26.5 (12.88–44.36) 
Sensitivity 62.5 (35.43–84.80) 
Positive Prediction Value 28.6 (20.65–38.07) 
Negative Prediction Value 60.0 (39.19–77.74)  

Fig. 3. A- Characteristic peaks in the individual spectra of the MSPs database among COVID-19 positive samples versus COVID-19 negative samples, obtained by 
manual analysis in Flex Analysis v3.4 software. B- Average spectra of same peaks, obtained by ClinProTools v3.0 software. A/B-1: 3372 Da, 3442 Da, 3465 Da and 
3488 Da. A/B-2: 6347 Da. A/B-3:10836 Da. 
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3. Results 

3.1. Evaluation of the novel “in-house” database 

The novel database was challenged with 223 (88 COVID-19 positive 
and 135 COVID-19 negatives) previously-characterized new samples 
different than those used to create it. They were processed by triplicate 
and the wells were read in the MALDI Biotyper OC v3.1 software for an 
offline classification. 

MALDI-TOF MS identification was considered correct when the 
result obtained from BE-COVID-19 database presented a score value ≥
2.0, according to the manufacturer’s recommendations with the Bruker 
score system. 

Only 22 % of the samples (50/223; 16 COVID-19 positive and 34 
COVID-19 negative samples) passed the cut-off mentioned above. 

According to the identification of the samples, we calculated the 
performance values of the complementary database that are presented 
in Table 2. 

3.2. Detection of potential biomarkers 

Flex Analysis v3.4 software revealed potential peaks of negativity 
which were not detected in the positive samples: 3372 Da, 3442 Da, 
3465 Da, 3488 Da, 6347 Da and 10836 Da (Fig. 3). These peaks were 
statistically significant and also detected with reproducible intensity in 
the average spectrum of that same class in ClinPro Tools (Table 3); the 
peak at m/z 3488 was also found but it did not pass the cutoff mentioned 
above. 

All characteristic MALDI-TOF MS peaks from the MSPs, obtained 
with the ClinPro Tools software can be found in Supplementary mate-
rial, Table S3. 

None of the peaks found could be molecularly attributed to virus- 
specific proteins because they were conspicuously detected in most of 
the negative samples; this could be due to some type of host-virus 
interaction that requires further study in the future. 

3.3. Machine learning models 

A total of three GA algorithms (optimized by adjusting the number of 
neighbors for a k-nearest neighbor classification) were applied for a 
classifier model construction using spectral data from the training 
group; generated based on the comparison of the recognition capability 

and cross validation of all the models and exhibiting the best efficiency 
in the classification of test patients. The results of Recognition Capacity 
(RC) and Cross Validation (CV) values of all models used are summa-
rized in Table 4. The Integration Regions for the classification according 
to the different algorithms for each model are in Supplementary mate-
rial, Table S4. 

This novel approach based on Machine Learning algorithms with the 
combination of Potential Biomarkers was evaluated with 167 clinical 
samples and the results of the performance are summarized in Table 5. 

The table of the results obtained from clinical samples (n: 167) by 
Machine Learning and detection of Biomarkers compared to the current 
reference technique (RT-PCR) can be found in the Supplementary ma-
terial, Table S5. 

4. Discussion 

This study aimed to evaluate the application of MALDI-TOF MS to 
COVID-19 identification, and to the detection of specific biomarkers, 
differentiating between virus-infected and uninfected patients, thus 
extending the use of this technology to a novel application. 

At the moment of writing this manuscript, the only diagnostic 
methodology available in our laboratory was real-time reverse 
transcription-PCR (RT-PCR), which, as is known in developing coun-
tries, can be an expensive technique, and reagents are often difficult to 
obtain, even more in the current situation of demand. According to the 
values of performance achieved, we consider mass spectrometry as a 
potential alternative tool that can complement the molecular reference 
techniques. 

We are aware that this outbreak has had a major impact on clinical 
microbiology laboratories, so new diagnosis methodologies are devel-
oped every day, some of which involves new genes RT-PCR targets to 
improve the molecular diagnosis (Chan et al., 2020), and others 
involving serological assays, such as rapid lateral flow assays (Li et al., 
2020). However, MALDI-TOF MS is a simple, inexpensive and fast 
technique that analyses protein profiles with a high reliability rate, and 
could be used as a rapid screening method in a large population 
(Croxatto et al., 2012). These preliminary results suggest that 
MALDI-TOF MS coupled with ClinPro Tools software could represents an 
interesting alternative for diagnosis of SARS-CoV-2 virus as long as we 
could enhance the values of performance obtained in this first approach. 
To achieve that goal, we are already working on increasing the numbers 

Table 3 
Single-peak analysis for the discrimination of COVID-19 positive samples from the negative samples (n = 20), between Flex Analysis v3.4 and ClinPro Tools v3.0.   

ClinPro Tools FlexAnalysis 

Mass PTTA PWKW PAD AUC AUC* Sensitivity (%) Specificity (%) PPV (%) PPN (%) 

3372,3 # 0.0133 0.0199 0.05450 0.87 0.667 33.33 100.00 100.00 64,71 
3443,28 # 0.0133 0.0222 0.04480 0.86 0.667 33.33 100.00 100.00 64.71 
3465,6 # 0.0133 0.0244 0.05790 0.85 0.742 66.67 81.82 75.00 75.00 
6347,57 # 0.0146 0.0096 0.02110 0.92 0.636 100.00 27.27 52.94 100.00 
10836,83 # 0.0885 0,0236 0.00019 0.86 0.727 100.00 45.45 60.00 100.00 

PTTA: P-value obtained through t-test. PWKW: P-value obtained through Wilcoxon/Kruskal-Wallis test. PAD: P-value obtained through Anderson-Darling test. *AUCs 
were obtained from a ROC curve constructed using Eng, J. ROC analysis: web-based calculator for ROC curves. from http://www.jrocfit.org. # the analysis include only 
these peaks, due to the other peaks of the table were not significant when the manual corroboration in Flex Analysis software was made. 

Table 4 
Complete results of Recognition capacity and Cross validation derived from the 
classification models calculated.  

Classifier Models RC (%) CV (%) 

2 Class model A 100 92.98 
3 Class model B 100 87.16 
2 Class model C 100 92.87 

RC: Recognition Capacity; CV: Cross Validation. 

Table 5 
Parameters of the Machine Learning combined with Potential Biomarkers. 
(n = 167).  

Parameters Evaluated (%) 95 % CI (%) 

Accuracy 67.66 (60.00–74.69) 
Specificity 71.72 (61.78–80.31) 
Sensitivity 61.76 (49.18–73.29) 
Positive Prediction Value 60.00 (51.01–68.37) 
Negative Prediction Value 73.20 (66.33–79.10)  

M.F. Rocca et al.                                                                                                                                                                                                                                

http://www.jrocfit.org


Journal of Virological Methods 286 (2020) 113991

7

of samples, evaluating different extraction methods, and making im-
provements of the machine learning algorithms. 

Nevertheless, this study using MALDI-TOF MS combined with ma-
chine learning algorithms could be, as far as we know, a revolutionary 
alternative as a screening assay that deserves further development 
because it could greatly improve upon currently available methods. 

5. Conclusions 

The identification of specific biomarkers for each peak or group of 
peaks represents a difficult and demanding task that requires further 
studies from a large number of high-quality spectra. 

Based on the promising preliminary results, this work constitutes the 
basis and encourages researchers to explore the potential of MALDI-TOF 
MS in order to assess the feasibility of this technology, widely available 
in clinical microbiology laboratories around the world, as a fast and 
inexpensive SARS-CoV-2 diagnostic tool. 

In conclusion, in order to prevent the risks of a shortage of screening 
means, we propose to develop an innovative alternative strategy, PCR- 
free, based on the detection of specific protein signatures in human 
nasopharyngeal swabs by MALDI-TOF MS profiling to detect individuals 
infected with SARS-CoV2. 

The development of this test is based on machine learning tech-
niques, which involve "training" a mathematical model, in which the 
results of the mass spectrometry analysis of samples was used to deter-
mine the information needed to distinguish a sample from a SARS-CoV2- 
infected patients from no infected. 

We could obtain peptide patterns from clinical samples with MALDI- 
TOF MS, and constructed classification models with moderate sensitivity 
and specificity. These results, though they need to be further refined, 
support the potential of MALDI-TOF MS technology, and provide a 
promising basis to extend its application to many other agents of med-
ical interest and it can be a valuable tool for early routine screening 
approaches. 
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